Extensions 1→N→G→Q→1 with N=C4 and Q=C22×C26

Direct product G=N×Q with N=C4 and Q=C22×C26
dρLabelID
C23×C52416C2^3xC52416,227

Semidirect products G=N:Q with N=C4 and Q=C22×C26
extensionφ:Q→Aut NdρLabelID
C4⋊(C22×C26) = D4×C2×C26φ: C22×C26/C2×C26C2 ⊆ Aut C4208C4:(C2^2xC26)416,228

Non-split extensions G=N.Q with N=C4 and Q=C22×C26
extensionφ:Q→Aut NdρLabelID
C4.1(C22×C26) = D8×C26φ: C22×C26/C2×C26C2 ⊆ Aut C4208C4.1(C2^2xC26)416,193
C4.2(C22×C26) = SD16×C26φ: C22×C26/C2×C26C2 ⊆ Aut C4208C4.2(C2^2xC26)416,194
C4.3(C22×C26) = Q16×C26φ: C22×C26/C2×C26C2 ⊆ Aut C4416C4.3(C2^2xC26)416,195
C4.4(C22×C26) = C13×C4○D8φ: C22×C26/C2×C26C2 ⊆ Aut C42082C4.4(C2^2xC26)416,196
C4.5(C22×C26) = C13×C8⋊C22φ: C22×C26/C2×C26C2 ⊆ Aut C41044C4.5(C2^2xC26)416,197
C4.6(C22×C26) = C13×C8.C22φ: C22×C26/C2×C26C2 ⊆ Aut C42084C4.6(C2^2xC26)416,198
C4.7(C22×C26) = Q8×C2×C26φ: C22×C26/C2×C26C2 ⊆ Aut C4416C4.7(C2^2xC26)416,229
C4.8(C22×C26) = C4○D4×C26φ: C22×C26/C2×C26C2 ⊆ Aut C4208C4.8(C2^2xC26)416,230
C4.9(C22×C26) = C13×2+ 1+4φ: C22×C26/C2×C26C2 ⊆ Aut C41044C4.9(C2^2xC26)416,231
C4.10(C22×C26) = C13×2- 1+4φ: C22×C26/C2×C26C2 ⊆ Aut C42084C4.10(C2^2xC26)416,232
C4.11(C22×C26) = M4(2)×C26central extension (φ=1)208C4.11(C2^2xC26)416,191
C4.12(C22×C26) = C13×C8○D4central extension (φ=1)2082C4.12(C2^2xC26)416,192

׿
×
𝔽